S&P 500 Consumer Discretionary PE Ratio

The S&P 500 Consumer Discretionary currently trades at a current P/E ratio of 29.74 as of October 24, 2025.

Over the past five years, the median P/E has been 26.59, putting today's valuation in the 83.3th percentile of that range. Looking at the longer 10-year period, where the median sits at 23.16, the current reading ranks in the 85.8th percentile - a level historically associated with Expensive pricing. The 20-year median of 18.32 provides additional context, with the current ratio in the 92.9th percentile of that extended timeframe.

Since March 1996, the S&P 500 Consumer Discretionary has recorded a median P/E ratio of 18.53 over 30 years. Against this full historical backdrop, the current valuation sits in the 95.2th percentile of all recorded readings, indicating that the market is trading well above its long-term median.

Historical P/E Comparison

The table below compares the current P/E Ratio (29.74) with its historical median and percentile rankings.

Time Period Median PE Ratio Percentile Rank Valuation
1 Year 27.05 100 Expensive
5 Year 26.59 83.3 Expensive
10 Year 23.16 85.8 Expensive
20 Year 18.32 92.9 Expensive
Since Mar 1996 18.53 95.2 Expensive

Returns vs P/E Ratio

Over the past decade, the PE rose from 17.3 (53.2th percentile) to 29.74 (85.8th percentile). Annualized total return over this period was 11.7%. Percentile rank indicates position within the historical distribution. Elevated valuations do not necessarily imply immediate low returns; markets can remain richly valued for extended periods, but this warrants caution for longer-horizon return assumptions.

Time Period Starting PE Ratio Starting Percentile Total Return Annualized Return
1 Year 26.16 85.8 +20.4% +20.4%
3 Year 21.73 75.9 +68.9% +19.1%
5 Year 33.32 98.6 +53.6% +9%
10 Year 17.27 53.2 +202.3% +11.7%

Historical Data (1996-2025)

Date Current PE Ratio
Oct 2025 29.74
Sep 2025 29.30
Aug 2025 29.60
Jul 2025 26.55
Jun 2025 26.05
May 2025 26.55
Apr 2025 27.16
Mar 2025 25.07
Feb 2025 27.46
Jan 2025 28.22
Dec 2024 26.94
Nov 2024 26.39
Oct 2024 26.16
Sep 2024 26.13
Aug 2024 27.67
Jul 2024 24.64
Jun 2024 25.19
May 2024 24.34
Apr 2024 26.64
Mar 2024 27.11
Feb 2024 25.69
Jan 2024 25.88
Dec 2023 25.89
Nov 2023 24.87
Oct 2023 24.54
Sep 2023 26.12
Aug 2023 27.89
Jul 2023 29.15
Jun 2023 28.19
May 2023 27.11
Apr 2023 23.20
Mar 2023 23.41
Feb 2023 25.80
Jan 2023 23.27
Dec 2022 20.72
Nov 2022 21.42
Oct 2022 21.73
Sep 2022 23.13
Aug 2022 26.14
Jul 2022 22.55
Jun 2022 21.59
May 2022 22.17
Apr 2022 23.41
Mar 2022 26.83
Feb 2022 25.29
Jan 2022 27.32
Dec 2021 29.05
Nov 2021 30.65
Oct 2021 31.93
Sep 2021 28.35
Aug 2021 28.74
Jul 2021 29.32
Jun 2021 30.14
May 2021 30.71
Apr 2021 31.54
Mar 2021 33.15
Feb 2021 32.47
Jan 2021 36.06
Dec 2020 35.39
Nov 2020 30.90
Oct 2020 33.32
Sep 2020 33.32
Aug 2020 35.31
Jul 2020 35.86
Jun 2020 37.70
May 2020 37.70
Apr 2020 34.32
Mar 2020 22.68
Feb 2020 23.07
Jan 2020 21.85
Dec 2019 21.39
Nov 2019 21.39
Oct 2019 21.07
Sep 2019 20.52
Aug 2019 21.16
Jul 2019 21.16
Jun 2019 19.95
May 2019 19.95
Apr 2019 21.06
Mar 2019 19.96
Feb 2019 19.39
Jan 2019 19.39
Dec 2018 18.03
Nov 2018 19.15
Oct 2018 20.32
Sep 2018 21.70
Aug 2018 20.62
Jul 2018 20.62
Jun 2018 20.31
May 2018 19.58
Apr 2018 19.24
Mar 2018 19.85
Feb 2018 19.85
Jan 2018 21.30
Dec 2017 20.26
Nov 2017 20.26
Oct 2017 19.19
Sep 2017 19.19
Aug 2017 19.16
Jul 2017 19.16
Jun 2017 19.12
May 2017 19.12
Apr 2017 18.98
Mar 2017 18.98
Feb 2017 18.52
Jan 2017 18.52
Dec 2016 18.04
Nov 2016 18.04
Oct 2016 17.24
Sep 2016 17.36
Aug 2016 17.36
Jul 2016 17
Jun 2016 17
May 2016 17
Apr 2016 17.43
Mar 2016 17.43
Feb 2016 16.04
Jan 2016 16.04
Dec 2015 17.88
Nov 2015 18.32
Oct 2015 17.27
Sep 2015 17.27
Aug 2015 18.53
Jul 2015 18.53
Jun 2015 18.63
May 2015 18.63
Apr 2015 18.74
Mar 2015 18.74
Feb 2015 18.43
Jan 2015 17.66
Dec 2014 17.66
Nov 2014 16.15
Oct 2014 16.15
Sep 2014 17.39
Aug 2014 17.39
Jul 2014 17.34
Jun 2014 17.05
May 2014 17.05
Apr 2014 17.05
Mar 2014 17.63
Feb 2014 17.23
Jan 2014 17.74
Dec 2013 17.74
Nov 2013 17.49
Oct 2013 16.76
Sep 2013 16.76
Aug 2013 16.64
Jul 2013 16.64
Jun 2013 16.48
May 2013 16.48
Apr 2013 15.99
Mar 2013 15.99
Feb 2013 15.42
Jan 2013 15.42
Dec 2012 14.62
Nov 2012 14.62
Oct 2012 14.84
Sep 2012 14.84
Aug 2012 14.53
Jul 2012 13.93
Jun 2012 14.07
May 2012 14.07
Apr 2012 14.68
Mar 2012 14.89
Feb 2012 14.35
Jan 2012 14.35
Dec 2011 13.42
Nov 2011 13.10
Oct 2011 13.10
Sep 2011 12.48
Aug 2011 12.38
Jul 2011 13.46
Jun 2011 13.90
May 2011 14.41
Apr 2011 14.41
Mar 2011 14.41
Feb 2011 14.54
Jan 2011 14.39
Dec 2010 14.39
Nov 2010 14.39
Oct 2010 13.94
Sep 2010 13.22
Aug 2010 12.79
Jul 2010 12.79
Jun 2010 13.85
May 2010 13.85
Apr 2010 15.70
Mar 2010 15.28
Feb 2010 14.60
Jan 2010 15.56
Dec 2009 15.56
Nov 2009 16.68
Oct 2009 16.68
Sep 2009 16.75
Aug 2009 16.75
Jul 2009 16.44
Jun 2009 16.44
May 2009 17
Apr 2009 26.64
Mar 2009 23.46
Feb 2009 21.55
Jan 2009 18.41
Dec 2008 17.59
Nov 2008 14.56
Oct 2008 12.51
Sep 2008 16.58
Aug 2008 16.58
Jul 2008 14.41
Jun 2008 15.56
May 2008 15.56
Apr 2008 14.63
Mar 2008 14.63
Feb 2008 14.66
Jan 2008 14.66
Dec 2007 15.20
Nov 2007 15.20
Oct 2007 16.71
Sep 2007 16.30
Aug 2007 16.30
Jul 2007 17.54
Jun 2007 18.20
May 2007 18.41
Apr 2007 18.05
Mar 2007 18.05
Feb 2007 18.79
Jan 2007 18.79
Dec 2006 18.33
Nov 2006 17.76
Oct 2006 17.15
Sep 2006 16.52
Aug 2006 15.08
Jul 2006 15.37
Jun 2006 15.37
May 2006 16.08
Apr 2006 16.08
Mar 2006 16.30
Feb 2006 16.47
Jan 2006 16.47
Dec 2005 16.06
Nov 2005 16.06
Oct 2005 16.24
Sep 2005 16.91
Aug 2005 17.44
Jul 2005 17.81
Jun 2005 17.69
May 2005 17.69
Apr 2005 17.97
Mar 2005 17.97
Feb 2005 18.66
Jan 2005 18.42
Dec 2004 18
Nov 2004 18
Oct 2004 16.79
Sep 2004 16.35
Aug 2004 16.47
Jul 2004 17.04
Jun 2004 17.04
May 2004 17.64
Apr 2004 17.64
Mar 2004 18.74
Feb 2004 19.48
Jan 2004 19.48
Dec 2003 19.09
Nov 2003 19.30
Oct 2003 19.30
Sep 2003 19.19
Aug 2003 19.33
Jul 2003 19.33
Jun 2003 19.33
May 2003 18.64
Apr 2003 18.27
Mar 2003 17.66
Feb 2003 16.89
Jan 2003 18.25
Dec 2002 17.31
Nov 2002 17.31
Oct 2002 17.35
Sep 2002 17.35
Aug 2002 17.32
Jul 2002 18.07
Jun 2002 19.36
May 2002 21.75
Apr 2002 23.65
Mar 2002 24.36
Feb 2002 25.65
Jan 2002 26.83
Dec 2001 27.88
Nov 2001 27.39
Oct 2001 25.87
Sep 2001 20.16
Aug 2001 24.49
Jul 2001 25.07
Jun 2001 25.88
May 2001 25.88
Apr 2001 25.27
Mar 2001 22.61
Feb 2001 24.72
Jan 2001 25.35
Dec 2000 23.09
Nov 2000 20.17
Oct 2000 18.65
Sep 2000 20.86
Aug 2000 20.70
Jul 2000 21.35
Jun 2000 21.35
May 2000 21.84
Apr 2000 22.50
Mar 2000 21.48
Feb 2000 21.48
Jan 2000 22.83
Dec 1999 24.17
Nov 1999 23.53
Oct 1999 22.88
Sep 1999 22.11
Aug 1999 23.15
Jul 1999 23.96
Jun 1999 24.26
May 1999 24.26
Apr 1999 25.52
Mar 1999 24.49
Feb 1999 24.49
Jan 1999 23.52
Dec 1998 22.60
Nov 1998 21.20
Oct 1998 18.20
Sep 1998 19.99
Aug 1998 20.76
Jul 1998 22.54
Jun 1998 21.14
May 1998 20.81
Apr 1998 20.81
Mar 1998 20.18
Feb 1998 19.60
Jan 1998 21.92
Dec 1997 17.83
Nov 1997 17.41
Oct 1997 17.30
Sep 1997 17.30
Aug 1997 16.74
Jul 1997 16.28
Jun 1997 16.28
May 1997 15.66
Apr 1997 15.16
Mar 1997 15.16
Feb 1997 14.91
Jan 1997 14.91
Dec 1996 14.70
Nov 1996 14.82
Oct 1996 14.82
Sep 1996 14.30
Aug 1996 14.30
Jul 1996 14.57
Jun 1996 15.44
May 1996 15.24
Apr 1996 15.24
Mar 1996 15.24
Sector Comparison

The table below shows a comparison of the current P/E Ratio (29.74) with other sectors.

Sector PE Ratio Percentile Rank Rating
S&P 500 Consumer Staples 22.25 75 Overvalued
S&P 500 Health Care 24.51 80.80 Expensive
S&P 500 Industrials 26.90 97.50 Expensive
S&P 500 Information Technology 40.44 99.20 Expensive
S&P 500 Materials 26.32 98.30 Expensive
S&P 500 Real Estate 35.48 35 Undervalued
S&P 500 Communication Services 19.84 64.20 Overvalued
S&P 500 Utilities 22.47 98.30 Expensive
S&P 500 Financials 19.32 99.20 Expensive
S&P 500 Energy 16.98 58.30 Fair Value

Definition: Trailing P/E Ratio

The trailing P/E ratio for S&P 500 Consumer Discretionary shows how much investors are paying for one unit of the index's past earnings.
It is calculated as : P/E = Index level / Aggregated EPS
Aggregated EPS means the index's total earnings per share after weighting each stock in the index (usually by its market capitalization): Aggregated EPS = sum(weight_i * EPS_i). For trailing P/E, the EPS_i values are the actual earnings from the past 12 months.