S&P 500 Utilities PE Ratio

The S&P 500 Utilities currently trades at a current P/E ratio of 22.47 as of October 24, 2025.

Over the past five years, the median P/E has been 19.65, putting today's valuation in the 96.7th percentile of that range. Looking at the longer 10-year period, where the median sits at 18.4, the current reading ranks in the 98.3th percentile - a level historically associated with Expensive pricing. The 20-year median of 16.02 provides additional context, with the current ratio at the highest level of that extended timeframe.

Since March 1996, the S&P 500 Utilities has recorded a median P/E ratio of 14.94 over 30 years. Against this full historical backdrop, the current valuation sits at the highest level of all recorded readings, indicating that the market is trading well above its long-term median.

Historical P/E Comparison

The table below compares the current P/E Ratio (22.47) with its historical median and percentile rankings.

Time Period Median PE Ratio Percentile Rank Valuation
1 Year 20.85 100 Expensive
5 Year 19.65 96.7 Expensive
10 Year 18.4 98.3 Expensive
20 Year 16.02 99.2 Expensive
Since Mar 1996 14.94 99.4 Expensive

Returns vs P/E Ratio

Over the past decade, the PE rose from 14.6 (58.6th percentile) to 22.47 (98.3th percentile). Annualized total return over this period was 7.4%. Percentile rank indicates position within the historical distribution. Elevated valuations do not necessarily imply immediate low returns; markets can remain richly valued for extended periods, but this warrants caution for longer-horizon return assumptions.

Time Period Starting PE Ratio Starting Percentile Total Return Annualized Return
1 Year 21.69 96.8 +11.2% +11.2%
3 Year 18.09 80.9 +42.8% +12.6%
5 Year 18.14 89.6 +40.8% +7.1%
10 Year 14.62 58.6 +103.3% +7.4%

Historical Data (1996-2025)

Date Current PE Ratio
Oct 2025 22.47
Sep 2025 21.45
Aug 2025 20.76
Jul 2025 21.30
Jun 2025 20.30
May 2025 20.71
Apr 2025 21.46
Mar 2025 20.67
Feb 2025 20.60
Jan 2025 20.24
Dec 2024 20.94
Nov 2024 22.39
Oct 2024 21.69
Sep 2024 21.37
Aug 2024 21.21
Jul 2024 19.52
Jun 2024 19.28
May 2024 19.55
Apr 2024 18.85
Mar 2024 17.40
Feb 2024 18.50
Jan 2024 17.76
Dec 2023 18.01
Nov 2023 18.05
Oct 2023 17.72
Sep 2023 17.67
Aug 2023 19.84
Jul 2023 21.01
Jun 2023 19.91
May 2023 21.47
Apr 2023 23.23
Mar 2023 22.75
Feb 2023 21.71
Jan 2023 19.12
Dec 2022 19.82
Nov 2022 19.05
Oct 2022 18.09
Sep 2022 20.68
Aug 2022 19.59
Jul 2022 18.45
Jun 2022 20.17
May 2022 21.55
Apr 2022 19.71
Mar 2022 19.20
Feb 2022 20.23
Jan 2022 20.23
Dec 2021 18.88
Nov 2021 19.14
Oct 2021 18.75
Sep 2021 19.87
Aug 2021 19.07
Jul 2021 18.70
Jun 2021 19.19
May 2021 19.19
Apr 2021 17.99
Mar 2021 17.22
Feb 2021 18.26
Jan 2021 18.49
Dec 2020 19.16
Nov 2020 18.51
Oct 2020 18.14
Sep 2020 18.41
Aug 2020 17.05
Jul 2020 17.05
Jun 2020 16.94
May 2020 16.60
Apr 2020 17.83
Mar 2020 19.10
Feb 2020 19.56
Jan 2020 19.56
Dec 2019 19.20
Nov 2019 19.70
Oct 2019 19.42
Sep 2019 18.96
Aug 2019 18.68
Jul 2019 18.51
Jun 2019 18.05
May 2019 18.33
Apr 2019 18.07
Mar 2019 17.69
Feb 2019 16.49
Jan 2019 15.73
Dec 2018 16.41
Nov 2018 15.89
Oct 2018 15.89
Sep 2018 16.30
Aug 2018 15.84
Jul 2018 15.84
Jun 2018 15.07
May 2018 15.77
Apr 2018 15.52
Mar 2018 15.52
Feb 2018 16.33
Jan 2018 16.60
Dec 2017 18.37
Nov 2017 17.61
Oct 2017 17.61
Sep 2017 17.94
Aug 2017 17.30
Jul 2017 17.30
Jun 2017 17.68
May 2017 17.69
Apr 2017 17.26
Mar 2017 17.26
Feb 2017 16.84
Jan 2017 16.21
Dec 2016 16.21
Nov 2016 16.83
Oct 2016 17.18
Sep 2016 17.52
Aug 2016 18.04
Jul 2016 18.38
Jun 2016 16.73
May 2016 17.22
Apr 2016 16.93
Mar 2016 16.57
Feb 2016 15.32
Jan 2016 14.84
Dec 2015 14.84
Nov 2015 15.47
Oct 2015 14.62
Sep 2015 14.62
Aug 2015 15.96
Jul 2015 15.28
Jun 2015 15.82
May 2015 15.95
Apr 2015 15.95
Mar 2015 17.06
Feb 2015 17.06
Jan 2015 16.85
Dec 2014 16.85
Nov 2014 16.15
Oct 2014 15.58
Sep 2014 15.64
Aug 2014 14.79
Jul 2014 16.04
Jun 2014 16.02
May 2014 16.02
Apr 2014 15.35
Mar 2014 15.35
Feb 2014 14.74
Jan 2014 14.74
Dec 2013 14.90
Nov 2013 14.90
Oct 2013 14.60
Sep 2013 14.77
Aug 2013 15.40
Jul 2013 14.76
Jun 2013 16.22
May 2013 16.22
Apr 2013 15.31
Mar 2013 14.99
Feb 2013 14.69
Jan 2013 13.91
Dec 2012 13.91
Nov 2012 14.52
Oct 2012 14.70
Sep 2012 14.92
Aug 2012 14.92
Jul 2012 14.70
Jun 2012 14.70
May 2012 13.99
Apr 2012 14.01
Mar 2012 14.16
Feb 2012 14.16
Jan 2012 14.16
Dec 2011 13.26
Nov 2011 13.44
Oct 2011 13.44
Sep 2011 12.19
Aug 2011 12.39
Jul 2011 13.33
Jun 2011 13.33
May 2011 12.60
Apr 2011 12.60
Mar 2011 12.26
Feb 2011 12.58
Jan 2011 12.29
Dec 2010 12.23
Nov 2010 12.23
Oct 2010 12.05
Sep 2010 12.05
Aug 2010 11.72
Jul 2010 11.29
Jun 2010 11.29
May 2010 11.82
Apr 2010 11.61
Mar 2010 11.61
Feb 2010 11.28
Jan 2010 11.87
Dec 2009 11.88
Nov 2009 11.42
Oct 2009 11.61
Sep 2009 11.46
Aug 2009 11.15
Jul 2009 11.15
Jun 2009 10.43
May 2009 10.43
Apr 2009 9.09
Mar 2009 9.09
Feb 2009 11.35
Jan 2009 10.84
Dec 2008 12.10
Nov 2008 12.10
Oct 2008 12.10
Sep 2008 13.03
Aug 2008 13.94
Jul 2008 14.39
Jun 2008 15.03
May 2008 15.03
Apr 2008 14.26
Mar 2008 14.89
Feb 2008 14.89
Jan 2008 16.15
Dec 2007 16.32
Nov 2007 15.57
Oct 2007 15.63
Sep 2007 14.78
Aug 2007 15.42
Jul 2007 15.69
Jun 2007 16.38
May 2007 16.66
Apr 2007 15.99
Mar 2007 15.33
Feb 2007 14.65
Jan 2007 15.05
Dec 2006 14.79
Nov 2006 14.79
Oct 2006 14.19
Sep 2006 14.27
Aug 2006 14.27
Jul 2006 13.85
Jun 2006 13.36
May 2006 13.28
Apr 2006 13.58
Mar 2006 13.86
Feb 2006 14.16
Jan 2006 14.27
Dec 2005 14.37
Nov 2005 14.68
Oct 2005 15.82
Sep 2005 15.83
Aug 2005 15.83
Jul 2005 15.13
Jun 2005 15.13
May 2005 15.13
Apr 2005 15.13
Mar 2005 14.80
Feb 2005 14.51
Jan 2005 14.51
Dec 2004 14.27
Nov 2004 13.98
Oct 2004 13.50
Sep 2004 13.50
Aug 2004 13.16
Jul 2004 12.62
Jun 2004 12.62
May 2004 13.17
Apr 2004 14.20
Mar 2004 13.78
Feb 2004 13.78
Jan 2004 13.22
Dec 2003 12.86
Nov 2003 12.66
Oct 2003 12.30
Sep 2003 11.99
Aug 2003 12.69
Jul 2003 12.69
Jun 2003 11.47
May 2003 11.17
Apr 2003 10.57
Mar 2003 10.19
Feb 2003 10.19
Jan 2003 9.66
Dec 2002 9.66
Nov 2002 7.92
Oct 2002 8.92
Sep 2002 9.32
Aug 2002 8.55
Jul 2002 9.84
Jun 2002 10.29
May 2002 11.27
Apr 2002 10.61
Mar 2002 10.61
Feb 2002 10.77
Jan 2002 10.77
Dec 2001 10.99
Nov 2001 11.41
Oct 2001 11.19
Sep 2001 11.76
Aug 2001 12.91
Jul 2001 13.58
Jun 2001 14.29
May 2001 15.10
Apr 2001 15.32
Mar 2001 15.96
Feb 2001 14.41
Jan 2001 16.12
Dec 2000 16.77
Nov 2000 16.77
Oct 2000 16.77
Sep 2000 15.88
Aug 2000 14.74
Jul 2000 14.14
Jun 2000 13.80
May 2000 13.80
Apr 2000 12.69
Mar 2000 13.42
Feb 2000 12.52
Jan 2000 12.52
Dec 1999 13.55
Nov 1999 13.55
Oct 1999 14.16
Sep 1999 14.68
Aug 1999 15.04
Jul 1999 15.53
Jun 1999 15.31
May 1999 14.71
Apr 1999 14.40
Mar 1999 14.66
Feb 1999 14.95
Jan 1999 15.64
Dec 1998 15.64
Nov 1998 15.55
Oct 1998 15.21
Sep 1998 14.54
Aug 1998 15.08
Jul 1998 15.08
Jun 1998 14.93
May 1998 14.93
Apr 1998 14.71
Mar 1998 14.44
Feb 1998 13.92
Jan 1998 13.57
Dec 1997 13.03
Nov 1997 12.47
Oct 1997 12.47
Sep 1997 12.16
Aug 1997 11.97
Jul 1997 11.97
Jun 1997 11.36
May 1997 11.36
Apr 1997 11.84
Mar 1997 11.95
Feb 1997 11.95
Jan 1997 12.30
Dec 1996 12.30
Nov 1996 11.82
Oct 1996 11.82
Sep 1996 11.78
Aug 1996 11.84
Jul 1996 11.84
Jun 1996 11.81
May 1996 11.81
Apr 1996 11.81
Mar 1996 12.19
Sector Comparison

The table below shows a comparison of the current P/E Ratio (22.47) with other sectors.

Sector PE Ratio Percentile Rank Rating
S&P 500 Consumer Discretionary 29.74 85.80 Expensive
S&P 500 Consumer Staples 22.25 75 Overvalued
S&P 500 Health Care 24.51 80.80 Expensive
S&P 500 Industrials 26.90 97.50 Expensive
S&P 500 Information Technology 40.44 99.20 Expensive
S&P 500 Materials 26.32 98.30 Expensive
S&P 500 Real Estate 35.48 35 Undervalued
S&P 500 Communication Services 19.84 64.20 Overvalued
S&P 500 Financials 19.32 99.20 Expensive
S&P 500 Energy 16.98 58.30 Fair Value

Definition: Trailing P/E Ratio

The trailing P/E ratio for S&P 500 Utilities shows how much investors are paying for one unit of the index's past earnings.
It is calculated as : P/E = Index level / Aggregated EPS
Aggregated EPS means the index's total earnings per share after weighting each stock in the index (usually by its market capitalization): Aggregated EPS = sum(weight_i * EPS_i). For trailing P/E, the EPS_i values are the actual earnings from the past 12 months.